Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 356(12): e2300378, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797174

RESUMO

A library of 3-aryl-3-azetidinyl acetic acid methyl ester derivatives was prepared from N-Boc-3-azetidinone employing the Horner-Wadsworth-Emmons reaction, rhodium(I)-catalyzed conjugate addition of arylboronic acids, and subsequent elaborations to obtain N-unprotected hydrochlorides, N-alkylated and N-acylated azetidine derivatives. The compounds were evaluated for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity, revealing several derivatives to possess AChE inhibition comparable to that of the AChE inhibitor rivastigmine. The binding mode of the AChE inhibitor donepezil and selected active compounds 26 and 27 within the active site of AChE was studied using molecular docking. Furthermore, the neuroprotective activity of the prepared compounds was evaluated in models associated with Parkinson's disease (salsolinol-induced) and aspects of Alzheimer's disease (glutamate-induced oxidative damage). Compound 28 showed the highest neuroprotective effect in both salsolinol- and glutamate-induced neurodegeneration models, and its protective effect in the glutamate model was revealed to be driven by a reduction in oxidative stress and caspase-3/7 activity.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Humanos , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Inibidores da Colinesterase/química , Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Glutamatos/uso terapêutico
2.
Plant J ; 116(6): 1825-1841, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37682018

RESUMO

Auxins and cytokinins are two major families of phytohormones that control most aspects of plant growth, development and plasticity. Their distribution in plants has been described, but the importance of cell- and subcellular-type specific phytohormone homeostasis remains undefined. Herein, we revealed auxin and cytokinin distribution maps showing their different organelle-specific allocations within the Arabidopsis plant cell. To do so, we have developed Fluorescence-Activated multi-Organelle Sorting (FAmOS), an innovative subcellular fractionation technique based on flow cytometric principles. FAmOS allows the simultaneous sorting of four differently labelled organelles based on their individual light scatter and fluorescence parameters while ensuring hormone metabolic stability. Our data showed different subcellular distribution of auxin and cytokinins, revealing the formation of phytohormone gradients that have been suggested by the subcellular localization of auxin and cytokinin transporters, receptors and metabolic enzymes. Both hormones showed enrichment in vacuoles, while cytokinins were also accumulated in the endoplasmic reticulum.


Assuntos
Arabidopsis , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Fluorescência , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Hormônios/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Phytochemistry ; 205: 113481, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36283448

RESUMO

Isoprenoid cytokinins are a class of naturally occurring plant signaling molecules. A series of prepared compounds derived from isoprenoid cytokinins (isopentenyladenine, trans-zeatin and cis-zeatin) with attached 2'-deoxy-d-ribose or 2',3'-dideoxy-d-ribose at the N9 position of the purine were prepared and their biological activities were examined. Different synthetic approaches were employed. The final compounds were characterized with variety of physicochemical methods (TLC, HPLC-MS, and NMR) and their cytokinin activity was determined in classical bioassays such as Amaranthus, tobacco callus, detached wheat leaf senescence and Arabidopsis thaliana root elongation inhibition assay. In addition, compounds were screened for activation of the cytokinin signaling pathway (bacterial receptor, competitive ligand binding and ARR5::GUS assay) to provide a detailed assessment of CK structure-activity relationship. The prepared compounds were found to be non-toxic to human cells and the majority of assays exhibited the highest activity of free bases while 2',3'-dideoxyribosides had very weak or no activity. In contrast to the free bases, all 2'-deoxyriboside derivatives were not toxic to tobacco callus even at the highest tested concentration (10-4 moL/l) and compound 1 (iPdR) induced betacyanin synthesis at higher concentration even stronger than iP free base in the Amaranthus bioassay. The general cytokinin activity pattern base > riboside >2'-deoxyriboside > 2',3'-dideoxyriboside was distinguished.


Assuntos
Citocininas , Terpenos , Humanos , Citocininas/farmacologia , Ribose
5.
J Agric Food Chem ; 70(23): 7288-7301, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35658447

RESUMO

Solubility of growth regulators is essential for their use in agriculture. Four new cytokinin salts─6-benzylaminopurine mesylate (1), 6-(2-hydroxybenzylamino)purine mesylate (2), 6-(3-hydroxybenzylamino)purine mesylate (3), and 6-(3-methoxybenzylamino)purine mesylate (4)─were synthesized, and their crystal structures were determined to clarify structural influence on water solubility. The mesylates were several orders of magnitude more water-soluble than the parent CKs. The new salts significantly reduced chlorophyll degradation and impairment of photosystem II functionality in barley leaf segments undergoing artificial senescence and had pronounced effects on the leaves' endogenous CK pools, maintaining high concentrations of functional metabolites for several days, unlike canonical CKs. A foliar treatment with 1 and 3 increased the harvest yield of spring barley by up to 8% when compared to treatment with the parent CKs while also increasing the number of productive tillers. This effect was attributed to the higher bioavailability of the mesylate salts and the avoidance of dimethyl sulfoxide exposure.


Assuntos
Citocininas , Hordeum , Citocininas/metabolismo , Citocininas/farmacologia , Hordeum/metabolismo , Mesilatos/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Sais , Água/metabolismo
6.
Planta ; 255(6): 124, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562552

RESUMO

MAIN CONCLUSION: Sulfated phenolic acids are widely occurring metabolites in plants, including fruits, vegetables and crops. The untargeted UHPLC-QTOF-MS metabolomics of more than 50 samples from plant, fungi and algae lead to the discovery of a small group of sulfated metabolites derived from phenolic acids. These compounds were detected in land plants for the first time. In this study, zosteric acid, 4-(sulfooxy)benzoic acid, 4-(sulfoooxy)phenylacetic acid, ferulic acid 4-sulfate and/or vanillic acid 4-sulfate were detected in a number of edible species/products, including oat (Avena sativa L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), tomato (Solanum lycopersicum L.), carrot (Daucus carota subsp. Sativus Hoffm.), broccoli (Brassica oleracea var. Italica Plenck), celery (Apium graveolens L.), cabbage (Brassica oleracea convar. sabauda L.), banana tree (Musa tropicana L.), pineapple fruit (Ananas comosus L.), radish bulb (Raphanus sativus L.) and olive oil (Olea europaea L.). The structural identification of sulfated compounds was performed by comparing retention times and mass spectral data to those of synthesized standards. In addition to above-mentioned compounds, isoferulic acid 3-sulfate and caffeic acid 4-sulfate were putatively identified in celery bulb (Apium graveolens L.) and broccoli floret (Brassica oleracea var. Italica Plenck), respectively. While sulfated phenolic acids were quantified in concentrations ranging from 0.34 to 22.18 µg·g-1 DW, the corresponding non-sulfated acids were mostly undetected or present at lower concentrations. The subsequent analysis of oat symplast and apoplast showed that they are predominantly accumulated in the symplast (> 70%) where they are supposed to be biosynthesized by sulfotransferases.


Assuntos
Apium , Brassica , Daucus carota , Raphanus , Solanum lycopersicum , Produtos Agrícolas , Frutas/química , Sulfatos/metabolismo , Verduras/química
7.
Sci Rep ; 12(1): 7011, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487935

RESUMO

Members of the Viola genus play important roles in traditional Asian herbal medicine. This study investigates the ability of Viola odorata L. extracts to inhibit Na+,K+-ATPase, an essential animal enzyme responsible for membrane potential maintenance. The root extract of V. odorata strongly inhibited Na+,K+-ATPase, while leaf and seeds extracts were basically inactive. A UHPLC-QTOF-MS/MS metabolomic approach was used to identify the chemical principle of the root extract's activity, resulting in the detection of 35,292 features. Candidate active compounds were selected by correlating feature area with inhibitory activity in 14 isolated fractions. This yielded a set of 15 candidate compounds, of which 14 were preliminarily identified as procyanidins. Commercially available procyanidins (B1, B2, B3 and C1) were therefore purchased and their ability to inhibit Na+,K+-ATPase was investigated. Dimeric procyanidins B1, B2 and B3 were found to be inactive, but the trimeric procyanidin C1 strongly inhibited Na+,K+-ATPase with an IC50 of 4.5 µM. This newly discovered inhibitor was docked into crystal structures mimicking the Na3E1∼P·ADP and K2E2·Pi states to identify potential interaction sites within Na+,K+-ATPase. Possible binding mechanisms and the principle responsible for the observed root extract activity are discussed.


Assuntos
Proantocianidinas , Viola , Animais , Flavonoides , Íons/metabolismo , Extratos Vegetais/farmacologia , Proantocianidinas/metabolismo , Proantocianidinas/farmacologia , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Espectrometria de Massas em Tandem
8.
Bioorg Med Chem ; 33: 115993, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497938

RESUMO

Kinetin (N6-furfuryladenine), a plant growth substance of the cytokinin family, has been shown to modulate aging and various age-related conditions in animal models. Here we report the synthesis of kinetin isosteres with the purine ring replaced by other bicyclic heterocycles, and the biological evaluation of their activity in several in vitro models related to neurodegenerative diseases. Our findings indicate that kinetin isosteres protect Friedreich́s ataxia patient-derived fibroblasts against glutathione depletion, protect neuron-like SH-SY5Y cells from glutamate-induced oxidative damage, and correct aberrant splicing of the ELP1 gene in fibroblasts derived from a familial dysautonomia patient. Although the mechanism of action of kinetin derivatives remains unclear, our data suggest that the cytoprotective activity of some purine isosteres is mediated by their ability to reduce oxidative stress. Further, the studies of permeation across artificial membrane and model gut and blood-brain barriers indicate that the compounds are orally available and can reach central nervous system. Overall, our data demonstrate that isosteric replacement of the kinetin purine scaffold is a fruitful strategy for improving known biological activities of kinetin and discovering novel therapeutic opportunities.


Assuntos
Cinetina/farmacologia , Purinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citoproteção , Relação Dose-Resposta a Droga , Humanos , Cinetina/síntese química , Cinetina/química , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Purinas/síntese química , Purinas/química , Relação Estrutura-Atividade
9.
Front Plant Sci ; 11: 87, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133021

RESUMO

In order to pinpoint phytohormone changes associated with enhanced heat stress tolerance, the complex phytohormone profiles [cytokinins, auxin, abscisic acid (ABA), jasmonic acid (JA), salicylic acid and ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC)] were compared in Arabidopsis thaliana after direct heat shock (45°C, 3 h) and in heat-stressed pre-acclimated plants (1 h at 37°C followed by 2 h at optimal temperature 20°C). Organ-specific responses were followed in shoot apices, leaves, and roots immediately after heat shock and after 24-h recovery at 20°C. The stress strength was evaluated via membrane ion leakage and the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) and antioxidant enzymes [superoxide dismutases, guaiacol peroxidases (POD), catalases, ascorbate peroxidases (APX)]. Heat acclimation diminished negative effects of heat stress, especially in apices and roots, no significant differences being observed in leaves. Low NOX1-3 activities indicated diminished production of reactive oxygen species. Higher activity of APX, POD1, and the occurrence of POD3-4 reflected acclimation-stimulated readiness of the antioxidant system. Acclimation diminished heat shock-induced changes of ABA, JA, cytokinin, and auxin levels in apices. Excess of ABA catabolites suggested an early stress response. The strong up-regulation of ABA and ACC in roots indicated defense boost in roots of acclimated plants compared to the non-acclimated ones. To evaluate the possibility to enhance stress tolerance by cytokinin pool modulation, INCYDE-F, an inhibitor of cytokinin oxidase/dehydrogenase, was applied. As cytokinin effects on stress tolerance may depend on timing of their regulation, INCYDE was applied at several time-points. In combination with acclimation, INCYDE treatment had a slight positive effect on heat stress tolerance, mainly when applied after 2-h period of the optimal temperature. INCYDE increased contents of cytokinins trans-zeatin and cis-zeatin in roots and auxin in all tissues after heat shock. INCYDE also helped to suppress the content of ABA in leaves, and ethylene in apices and roots. INCYDE application to non-acclimated plants (applied before or after heat shock) strengthened negative stress effects, probably by delaying of the repair processes. In conclusion, pre-treatment with moderately elevated temperature enhanced heat stress tolerance and accelerated recovery after stress. Inhibition of cytokinin degradation by INCYDE slightly improved recovery of acclimated plants.

10.
Bioorg Med Chem ; 28(2): 115230, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31862308

RESUMO

Cytokinins are naturally occurring substances that act as plant growth regulators promoting plant growth and development, including shoot initiation and branching, and also affecting apical dominance and leaf senescence. Aromatic cytokinin 6-benzylaminopurine (BAP) has been widely used in micropropagation systems and biotechnology. However, its 9-glucoside (BAP9G) accumulates in explants, causing root inhibition and growth heterogenity. To overcome BAP disadvantages, a series of ring-substituted 2'-deoxy-9-(ß)-d-ribofuranosylpurine derivatives was prepared and examined in different classical cytokinin bioassays. Amaranthus, senescence and tobacco callus bioassays were employed to provide details of cytokinin activity of 2'-deoxy-9-(ß)-d-ribosides compared to their respective free bases and ribosides. The prepared derivatives were also tested for their recognition by cytokinin receptors of Arabidopsis thaliana AHK3 and CRE1/AHK4. The ability of aromatic N6-substituted adenine-2'-deoxy-9-(ß)-d-ribosides to promote plant growth and delay senescence was increased considerably and, in contrast to BAP, no loss of cytokinin activity at higher concentrations was observed. The presence of a 2'-deoxyribosyl moiety at the N9-position led to an increase in cytokinin activities in comparison to the free bases and ribosides. The antioxidant capacity, cytotoxicity and effect on the MHV-68 gammaherpesvirus strain were also examined.


Assuntos
Antioxidantes/farmacologia , Arabidopsis/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Nucleosídeos de Purina/farmacologia , Animais , Antioxidantes/síntese química , Antioxidantes/química , Arabidopsis/metabolismo , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Estrutura Molecular , Reguladores de Crescimento de Plantas/síntese química , Reguladores de Crescimento de Plantas/química , Nucleosídeos de Purina/síntese química , Nucleosídeos de Purina/química , Relação Estrutura-Atividade , Células Vero
11.
Bioorg Chem ; 90: 103005, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31271944

RESUMO

Rho-associated serine/threonine kinases (ROCKs) are principal regulators of the actin cytoskeleton that regulate the contractility, shape, motility, and invasion of cells. We explored the relationships between structure and anti-ROCK2 activity in a group of purine derivatives substituted at the C6 atom by piperidin-1-yl or azepan-1-yl groups. Structure-activity relationship (SAR) analyses suggested that anti-ROCK activity is retained, and may be further increased, by substitution of the parent compounds at the C2 atom or by expansion of the C6 side chain. These inhibitors of ROCK can reach effective concentrations within cells, as demonstrated by a decrease in phosphorylation of the ROCK target MLC, and by inhibition of the ROCK-dependent invasion of melanoma cells in the collagen matrix. Our study may be useful for further optimization of C6-substituted purine inhibitors of ROCKs and of other sensitive kinases identified by the screening of a broad panel of protein kinases.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Purinas/síntese química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
12.
Front Plant Sci ; 10: 674, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191583

RESUMO

Virulent strains of Rhodococcus fascians cause a range of disease symptoms, many of which can be mimicked by application of cytokinin. Both virulent and avirulent strains produce a complex of cytokinins, most of which can be derived from tRNA degradation. To test the three current hypotheses regarding the involvement of cytokinins as virulence determinants, we used PCR to detect specific genes, previously associated with a linear virulence plasmid, including two methyl transferase genes (mt1 and mt2) and fas4 (dimethyl transferase), of multiple strains of R. fascians. We inoculated Pisum sativum (pea) seeds with virulent and avirulent strains of R. fascians, monitored the plants over time and compared these to mock-inoculated controls. We used RT-qPCR to monitor the expression of mt1, mt2, and fas4 in inoculated tissues and LC-MS/MS to obtain a comprehensive picture of the cytokinin complement of inoculated cotyledons, roots and shoots over time. The presence and expression of mt1 and mt2 was associated with those strains of R. fascians classed as virulent, and not those classed as avirulent. Expression of mt1, mt2, and fas4 peaked at 9 days post-inoculation (dpi) in cotyledons and at 15 dpi in shoots and roots developed from seeds inoculated with virulent strain 602. Pea plants inoculated with virulent and avirulent strains of R. fascians both contained cytokinins likely to have been derived from tRNA turnover including the 2-methylthio cytokinins and cis-zeatin-derivatives. Along with the isopentenyladenine-type cytokinins, the levels of these compounds did not correlate with virulence. Only the novel 1- and 2-methylated isopentenyladenine cytokinins were uniquely associated with infection by the virulent strains and are, therefore, the likely causative factors of the disease symptoms.

13.
J Labelled Comp Radiopharm ; 62(3): 118-125, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30592529

RESUMO

Synthesis of [15 N4 ] purine labeled cytokinine glycosides derived from zeatins and topolins containing a 9-ß-d, 7-ß-d-glucopyranosyl, or 9-ß-d-ribofuranosyl group is described. These N6 -substituted adenine derivatives are intended as internal analytic standards for phytohormone analysis. All labeled compounds were prepared from 6-chloro[15 N4 ]purine (1). The equilibrium reaction of 1 with acetobromo-α-d-glucose gave isomeric 7-ß-d (3) and 9-ß-d (4) chloro glucosyl precursors, which were treated with the corresponding amines to get desired labeled cytokinin 7-ß-d (6) and 9-ß-d (5) glucopyranosides. Cytokinins containing 9-ß-d-ribofuranosyl group (8) were obtained by direct enzymatic transglycosylation reaction of cytokinins (7) prepared from 6-chloro[15 N4 ] purine (1).


Assuntos
Adenina/análogos & derivados , Zeatina/análogos & derivados , Isótopos de Nitrogênio/química
14.
R Soc Open Sci ; 5(11): 181322, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30564417

RESUMO

Cytokinins (CKs) and their metabolites and derivatives are essential for cell division, plant growth regulation and development. They are typically found at minute concentrations in plant tissues containing very complicated biological matrices. Therefore, defined standards labelled with stable isotopes are required for precise metabolic profiling and quantification of CKs, as well as in vivo elucidation of CK biosynthesis in various plant species. In this work, 11 [15N]-labelled C6-purine derivatives were prepared, among them 5 aromatic (4, 5, 6, 7, 8) and 3 isoprenoid (9, 10, 11) CKs. Compared to current methods, optimized syntheses of 6-amino-9H-[15N5]-purine (adenine) and 6-chloro-9H-[15N4]-purine (6-chloropurine) were performed to achieve more effective, selective and generally easier approaches. The chemical identity and purity of prepared compounds were confirmed by physico-chemical analyses (TLC; HRMS; HPLC-MS; 1H, 13C, 15N NMR). The presented approach is applicable for the synthesis of any other desired [15N4]-labelled C6-substituted purine derivatives.

15.
Front Plant Sci ; 9: 1225, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271413

RESUMO

Stress-induced senescence is a global agro-economic problem. Cytokinins are considered to be key plant anti-senescence hormones, but despite this practical function their use in agriculture is limited because cytokinins also inhibit root growth and development. We explored new cytokinin analogs by synthesizing a series of 1,2,3-thiadiazol-5-yl urea derivatives. The most potent compound, 1-(2-methoxy-ethyl)-3-1,2,3-thiadiazol-5-yl urea (ASES - Anti-Senescence Substance), strongly inhibited dark-induced senescence in leaves of wheat (Triticum aestivum L.) and Arabidopsis thaliana. The inhibitory effect of ASES on wheat leaf senescence was, to the best of our knowledge, the strongest of any known natural or synthetic compound. In vivo, ASES also improved the salt tolerance of young wheat plants. Interestingly, ASES did not affect root development of wheat and Arabidopsis, and molecular and classical cytokinin bioassays demonstrated that ASES exhibits very low cytokinin activity. A proteomic analysis of the ASES-treated leaves further revealed that the senescence-induced degradation of photosystem II had been very effectively blocked. Taken together, our results including data from cytokinin content analysis demonstrate that ASES delays leaf senescence by mechanism(s) different from those of cytokinins and, more effectively. No such substance has yet been described in the literature, which makes ASES an interesting tool for research of photosynthesis regulation. Its simple synthesis and high efficiency predetermine ASES to become also a potent plant stress protectant in biotechnology and agricultural industries.

16.
Phytochemistry ; 136: 156-164, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28153445

RESUMO

Cytokinin ribosides (N6-substituted adenosines) have demonstrated anticancer activity in various cultured cell lines, several xenografts and even a small clinical trial. Effects of kinetin riboside, N6-benzyladenosine (BAR) and N6-isopentenyladenosine on various parameters related to apoptosis have also been reported, but not directly compared with those of the highly active naturally occurring aromatic cytokinins oTR (ortho-topolin riboside) and 2OH3MeOBAR (N6-(2-hydroxy-3-methoxybenzyl)adenosine). Here we show that 2OH3MeOBAR is the most active cytokinin riboside studied to date (median, 1st quartile, 3rd quartile and range of GI50 in tests with the NCI60 cell panel: 0.19, 0.10, 0.43 and 0.02 to 15.7 µM, respectively) and it differs from other cytokinins by inducing cell death without causing pronounced ATP depletion. Analysis of NCI60 test data suggests that its activity is independent of p53 status. Further we demonstrate that its 5'-monophosphate, the dominant cancer cell metabolite, inhibits the candidate oncogene DNPH1. Synthesis, purification, HPLC-MS identification and HPLC-UV quantification of 2OH3MeOBAR metabolites are also reported.


Assuntos
Adenosina/farmacologia , Citocininas/farmacologia , Adenosina/análogos & derivados , Adenosina/química , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Citocininas/química , Glicosídeos/farmacologia , Isopenteniladenosina/farmacologia , Cinetina/farmacologia , Estrutura Molecular
17.
Plant J ; 89(5): 1065-1075, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27943492

RESUMO

Cytokinins (CKs) are pivotal plant hormones that have crucial roles in plant growth and development. However, their isolation and quantification are usually challenging because of their extremely low levels in plant tissues (pmol g-1 fresh weight). We have developed a simple microscale magnetic immunoaffinity-based method for selective one-step isolation of CKs from very small amounts of plant tissue (less than 0.1 mg fresh weight). The capacity of the immunosorbent and the effect of the complex plant matrix on the yield of the rapid one-step purification were tested using a wide range of CK concentrations. The total recovery range of the new microscale isolation procedure was found to be 30-80% depending on individual CKs. Immunoaffinity extraction using group-specific monoclonal CK antibodies immobilized onto magnetic microparticles was combined with a highly sensitive ultrafast mass spectrometry-based method with a detection limit close to one attomole. This combined approach allowed metabolic profiling of a wide range of naturally occurring CKs (bases, ribosides and N9 -glucosides) in 1.0-mm sections of the Arabidopsis thaliana root meristematic zone. The magnetic immunoaffinity separation method was shown to be a simple and extremely fast procedure requiring minimal amounts of plant tissue.


Assuntos
Arabidopsis/química , Citocininas/isolamento & purificação , Nanopartículas de Magnetita , Reguladores de Crescimento de Plantas/isolamento & purificação , Raízes de Plantas/química , Citocininas/química , Reguladores de Crescimento de Plantas/química
18.
Plant Mol Biol ; 92(1-2): 235-48, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27422623

RESUMO

KEY MESSAGE: Two new TDZ derivatives (HETDZ and 3FMTDZ) are very potent inhibitors of CKX and are promising candidates for in vivo studies. Cytokinin hormones regulate a wide range of essential processes in plants. Thidiazuron (N-phenyl-N'-1,2,3-thiadiazol-5-yl urea, TDZ), formerly registered as a cotton defoliant, is a well known inhibitor of cytokinin oxidase/dehydrogenase (CKX), an enzyme catalyzing the degradation of cytokinins. TDZ thus increases the lifetime of cytokinins and their effects in plants. We used in silico modeling to design, synthesize and characterize twenty new TDZ derivatives with improved inhibitory properties. Two compounds, namely 1-[1,2,3]thiadiazol-5-yl-3-(3-trifluoromethoxy-phenyl)urea (3FMTDZ) and 1-[2-(2-hydroxyethyl)phenyl]-3-(1,2,3-thiadiazol-5-yl)urea (HETDZ), displayed up to 15-fold lower IC 50 values compared with TDZ for AtCKX2 from Arabidopsis thaliana and ZmCKX1 and ZmCKX4a from Zea mays. Binding modes of 3FMTDZ and HETDZ were analyzed by X-ray crystallography. Crystal structure complexes, solved at 2.0 Å resolution, revealed that HETDZ and 3FMTDZ bound differently in the active site of ZmCKX4a: the thiadiazolyl ring of 3FMTDZ was positioned over the isoalloxazine ring of FAD, whereas that of HETDZ had the opposite orientation, pointing toward the entrance of the active site. The compounds were further tested for cytokinin activity in several cytokinin bioassays. We suggest that the combination of simple synthesis, lowered cytokinin activity, and enhanced inhibitory effects on CKX isoforms, makes 3FMTDZ and HETDZ suitable candidates for in vivo studies.


Assuntos
Inibidores Enzimáticos/química , Oxirredutases/antagonistas & inibidores , Compostos de Fenilureia/química , Tiadiazóis/química , Citocininas/metabolismo , Inibidores Enzimáticos/farmacologia
19.
Plant Sci ; 247: 127-37, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27095406

RESUMO

Cytokinins (CKs) are an important group of phytohormones. Their tightly regulated and balanced levels are essential for proper cell division and plant organ development. Here we report precise quantification of CK metabolites and other phytohormones in maize reproductive organs in the course of pollination and kernel maturation. A novel enzymatic activity dependent on NADP(+) converting trans-zeatin (tZ) to 6-(3-methylpyrrol-1-yl)purine (MPP) was detected. MPP shows weak anticytokinin properties and inhibition of CK dehydrogenases due to their ability to bind to an active site in the opposite orientation than substrates. Although the physiological significance of tZ side-chain cyclization is not anticipated as the MPP occurrence in maize tissue is very low, properties of the novel CK metabolite indicate its potential for utilization in plant in vitro tissue culture. Furthermore, feeding experiments with different isoprenoid CKs revealed distinct preferences in glycosylation of tZ and cis-zeatin (cZ). While tZ is preferentially glucosylated at the N9 position, cZ forms mainly O-glucosides. Since O-glucosides, in contrast to N9-glucosides, are resistant to irreversible cleavage catalyzed by CK dehydrogenases, the observed preference of maize CK glycosyltransferases to O-glycosylate zeatin in the cis-position might be a reason why cZ derivatives are over-accumulated in different maize tissues and organs.


Assuntos
Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Terpenos/metabolismo , Zea mays/metabolismo , Citocininas/análise , Citocininas/isolamento & purificação , Regulação da Expressão Gênica de Plantas , Glicosilação , Glicosiltransferases/metabolismo , Oxirredutases/metabolismo , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Polinização , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Terpenos/análise , Terpenos/isolamento & purificação , Zea mays/crescimento & desenvolvimento , Zeatina/análise , Zeatina/isolamento & purificação , Zeatina/metabolismo
20.
N Biotechnol ; 33(5 Pt B): 614-624, 2016 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26703810

RESUMO

Cytokinins represent an important group of plant growth regulators that can modulate several biotechnological processes owing to their ability to influence almost all stages of plant development and growth. In addition, the use of purine based cytokinins with aromatic substituent in C6 position of the purine moiety in tissue culture techniques is currently experiencing a surge in interest, made possible by the ongoing systematic synthesis and study of these compounds. This review article outlines progress in the synthesis of aromatic cytokinins, the in vitro and in vivo effects of these substances and insights gleaned from their synthesis. As the purine moiety in these compounds can be substituted at several positions, we examine each of the substitution possibilities in relation to the derivatives prepared so far. The discussion highlights the gradual simplification of their preparation in relation to their application in practice and summarizes the relevant organic chemistry literature and published patents.


Assuntos
Citocininas/síntese química , Reguladores de Crescimento de Plantas/síntese química , Biotecnologia , Citocininas/química , Citocininas/farmacologia , Estrutura Molecular , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/fisiologia , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Purinas/síntese química , Purinas/química , Purinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...